Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(10): 4146-4153, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427846

RESUMO

Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Mioglobina/química , Íons/química , Gases/química
2.
J Am Chem Soc ; 145(44): 23972-23985, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874934

RESUMO

Tandem mass spectrometry (MS/MS) using fragmentation has become one of the most effective methods for gaining sequence and structural information on biomolecules. Ion/ion reactions are competitive reactions, where either proton transfer (PT) or electron transfer (ET) can occur from interactions between multiply charged cations and singly charged anions. Utilizing ion/ion reactions with fluoranthene has offered a unique method of fragment formation for the structural elucidation of biomolecules. Fluoranthene is considered an ideal anion reagent because it selectively causes electron-transfer dissociation (ETD) and minimizes PT when interacting with peptides. However, limited investigations have sought to understand how fluoranthene─the primary, commercially available anion reagent─interacts with other biomolecules. Here, we apply deuterium labeling to investigate ion/ion reaction mechanisms between fluoranthene and divalent, metal-adducted carbohydrates (Ca2+, Mg2+, Co2+, and Ni2+). Deuterium labeling of carbohydrates allowed us to observe evidence of hydrogen/deuterium exchange (HDX) occurring after ion/ion dissociation reactions. The extent of deuterium loss is dependent on several factors, including the physical properties of the metal ion and the fragment structure. Based on the deuterium labeling data, we have proposed ETD, PTD, and intermolecular PT─also described as HDX─mechanisms. This research provides a fundamental perspective of ion/ion and ion/molecule reaction mechanisms and illustrates properties that impact ion/ion and ion/molecule reactions for carbohydrates. Together, this could improve the capability to distinguish complex and heterogeneous biomolecules, such as carbohydrates.


Assuntos
Prótons , Espectrometria de Massas em Tandem , Deutério , Carboidratos , Ânions , Medição da Troca de Deutério/métodos
3.
Anal Bioanal Chem ; 415(25): 6201-6212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542535

RESUMO

The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.


Assuntos
Escherichia coli , Humanos , Cloranfenicol O-Acetiltransferase/química , Cloranfenicol O-Acetiltransferase/metabolismo , Ligantes , Acetilcoenzima A , Espectrometria de Massas/métodos , Escherichia coli/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...